国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁(yè)> 外文OA文獻(xiàn) >Large-memory nodes for energy efficient high-performance computing
【2h】

Large-memory nodes for energy efficient high-performance computing

機(jī)譯:用于節(jié)能高性能計(jì)算的大內(nèi)存節(jié)點(diǎn)

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻(xiàn)查詢(xún)和代理獲取服務(wù),本網(wǎng)站沒(méi)有原文。下單后我們將采用程序或人工為您竭誠(chéng)獲取高質(zhì)量的原文,但由于OA文獻(xiàn)來(lái)源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻(xiàn)不完整或與標(biāo)題不符等情況,如果獲取不到我們將提供退款服務(wù)。請(qǐng)知悉。

摘要

Energy consumption is by far the most important contributor to HPC cluster operational costs, and it accounts for a significant share of the total cost of ownership. Advanced energy-saving techniques in HPC components have received significant research and development effort, but a simple measure that can dramatically reduce energy consumption is often overlooked. We show that, in capacity computing, where many small to medium-sized jobs have to be solved at the lowest cost, a practical energy-saving approach is to scale-in the application on large-memory nodes. We evaluate scaling-in; i.e. decreasing the number of application processes and compute nodes (servers) to solve a fixed-sized problem, using a set of HPC applications running in a production system. Using standard-memory nodes, we obtain average energy savings of 36%, already a huge figure. We show that the main source of these energy savings is a decrease in the node-hours (node_hours = #nodes x exe_time), which is a consequence of the more efficient use of hardware resources.\udScaling-in is limited by the per-node memory capacity. We therefore consider using large-memory nodes to enable a greater degree of scaling-in. We show that the additional energy savings, of up to 52%, mean that in many cases the investment in upgrading the hardware would be recovered in a typical system lifetime of less than five years.
機(jī)譯:迄今為止,能源消耗是HPC集群運(yùn)營(yíng)成本的最重要因素,并且占總擁有成本的很大一部分。 HPC組件中的先進(jìn)節(jié)能技術(shù)已經(jīng)獲得了巨大的研究和開(kāi)發(fā)成果,但是通常會(huì)忽略一種可以顯著降低能耗的簡(jiǎn)單措施。我們表明,在容量計(jì)算中,必須以最低的成本解決許多中小型工作,一種實(shí)用的節(jié)能方法是在大型內(nèi)存節(jié)點(diǎn)上擴(kuò)展應(yīng)用程序。我們?cè)u(píng)估放大;即使用在生產(chǎn)系統(tǒng)中運(yùn)行的一組HPC應(yīng)用程序,減少應(yīng)用程序進(jìn)程和計(jì)算節(jié)點(diǎn)(服務(wù)器)的數(shù)量以解決固定大小的問(wèn)題。使用標(biāo)準(zhǔn)內(nèi)存節(jié)點(diǎn),我們可以平均節(jié)省36%的能源,這已經(jīng)是一個(gè)巨大的數(shù)字了。我們表明,這些節(jié)能的主要來(lái)源是節(jié)點(diǎn)小時(shí)數(shù)的減少(node_hours = #nodes x exe_time),這是更有效地利用硬件資源的結(jié)果。\ udScaling-in受限于節(jié)點(diǎn)內(nèi)存容量。因此,我們考慮使用大內(nèi)存節(jié)點(diǎn)來(lái)實(shí)現(xiàn)更大程度的擴(kuò)展。我們表明,最多可節(jié)省52%的能源,這意味著在許多情況下,通常在不到五年的系統(tǒng)使用壽命內(nèi)就可以收回對(duì)硬件升級(jí)的投資。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專(zhuān)利
代理獲取

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)